

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

WINTER-18 EXAMINATION

Subject Name:Computer GraphicsModel AnswerSubject Code:22318

Important Instructions to examiners:

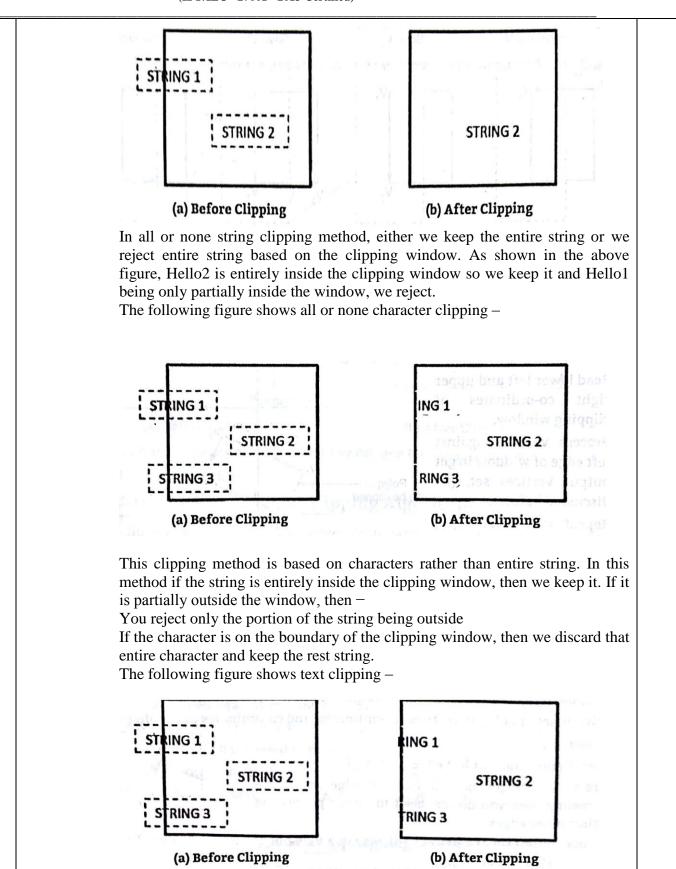
- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q. N.	Answer	Marking Scheme
1		Attempt any FIVE of the following:	10 M
	а	Define:	2 M
		(i)Pixel	
		(ii)Frame Buffer	
	Ans	• Pixel	1 M each for correct
		Pixel or Pel is defined as "the smallest addressable screen element". OR	definition
		A pixel may be defined as the smallest size object or color spot that can be displayed and addressed on a monitor.	
		• Frame Buffer	
		The <i>frame buffer</i> is the video memory (RAM) that is used to hold or map the image displayed on the screen.	
		OR	
		A framebuffer (frame buffer , or sometimes framestore) is a portion of RAM containing a bitmap that drives a video display.	

b	Give the characterist	ics of display adapte	or.		2 M	
Ans	The characteristics of common display adapters are given in Table. The present-day display adapter supports all the modes of the preceding display adapters					
	Driver selected	Mode constant	Display mode			
	CGA	CGAC0 CGAC1 CGAC2 CGAC3 CGSHI	320×200 , 4 colour, palette 0 320×200 , 4 colour, palette 1 320×200 , 4 colour, palette 2 320×200 , 4 colour, palette 3 640×200 , 2 colour			
	EGA	EGALO EGAHI	640 × 200, 16 colour 640 × 350, 16 colour			
	VGA	VGALO VGAMED VGAHI	640 × 200, 16 colour 640 × 350, 16 colour 640 × 480, 16 colour			
с	Explain Raster Scan					
Ans	 In Raster scan, the electron beam from electron gun is swept horizontally across the phosphor one row at time from top to bottom. The electron beam sweeps back and forth from left to right across the screen. The beam is on, while it moves from left to right. The beam is off, when it moves back from right to left. This phenomenon is called the <i>horizontal retrace</i>. As soon as the beam reaches the bottom of the screen, it is turned off and is rapidly retraced back to the top to start again. This is called the <i>vertical retrace</i>. Raster scan displays maintain the steady image on the screen by repeating scanning of the same image. This process is known as <i>refreshing of screen</i>. Scan line 					
Ans	 acro The screwhee whee hort As screwning As screwning<th>oss the phosphor one e electron beam swe een. The beam is on, en it moves back fr <i>izontal retrace.</i> soon as the beam rea idly retraced back to <i>race</i>. ster scan displays ma nning of the same im-</th><th>row at time from top to bottom. eeps back and forth from left to ri while it moves from left to right. The rom right to left. This phenomenor ches the bottom of the screen, it is tu to the top to start again. This is call intain the steady image on the scree age. This process is known as <i>refrest</i> Scan line</th><th>ght across the ne beam is off, n is called the rned off and is ed the <i>vertical</i> n by repeating <i>hing of screen</i>.</th><th>2 M for correct explanatio</th>	oss the phosphor one e electron beam swe een. The beam is on, en it moves back fr <i>izontal retrace.</i> soon as the beam rea idly retraced back to <i>race</i> . ster scan displays ma nning of the same im-	row at time from top to bottom. eeps back and forth from left to ri while it moves from left to right. The rom right to left. This phenomenor ches the bottom of the screen, it is tu to the top to start again. This is call intain the steady image on the scree age. This process is known as <i>refrest</i> Scan line	ght across the ne beam is off, n is called the rned off and is ed the <i>vertical</i> n by repeating <i>hing of screen</i> .	2 M for correct explanatio	
	 acro The screwhee whee hort As screwning As screwning<td>oss the phosphor one e electron beam swe een. The beam is on, en it moves back fr <i>izontal retrace.</i> soon as the beam rea idly retraced back to <i>race</i>. ster scan displays ma nning of the same im Horizontal retrace</td><td>row at time from top to bottom. eeps back and forth from left to ri while it moves from left to right. The rom right to left. This phenomenor ches the bottom of the screen, it is tu to the top to start again. This is called intain the steady image on the scree age. This process is known as <i>refrest</i> Scan line Vertice retract</td><td>ght across the ne beam is off, n is called the rned off and is ed the <i>vertical</i> n by repeating <i>hing of screen</i>.</td><td></td>	oss the phosphor one e electron beam swe een. The beam is on, en it moves back fr <i>izontal retrace.</i> soon as the beam rea idly retraced back to <i>race</i> . ster scan displays ma nning of the same im Horizontal retrace	row at time from top to bottom. eeps back and forth from left to ri while it moves from left to right. The rom right to left. This phenomenor ches the bottom of the screen, it is tu to the top to start again. This is called intain the steady image on the scree age. This process is known as <i>refrest</i> Scan line Vertice retract	ght across the ne beam is off, n is called the rned off and is ed the <i>vertical</i> n by repeating <i>hing of screen</i> .		
Ans d Ans	 acro The screwhee hort As srapi retrive Ras scar 	oss the phosphor one e electron beam swe een. The beam is on, en it moves back fr <i>rizontal retrace</i> . soon as the beam rea idly retraced back to <i>race</i> . ster scan displays ma nning of the same im Horizontal retrace	row at time from top to bottom. eeps back and forth from left to ri while it moves from left to right. The rom right to left. This phenomenor ches the bottom of the screen, it is tu to the top to start again. This is called intain the steady image on the screen age. This process is known as <i>refrest</i> Scan line Vertice Tetrace Raster Scan CRT	ght across the ne beam is off, n is called the rned off and is ed the <i>vertical</i> n by repeating <i>hing of screen</i> .	correct explanation	

		and hence the name DDA.							
		Bresenham's Algorithm							
I		The Bresenham algorithm is another lin	e drawing algorithm which uses integer calculations						
		for drawing line.							
	е	List types of Polygon		2 M					
	Ans	Polygon can be of two types:-		1 M each					
		• Convex polygon							
		1 00							
		Concave polygon							
	f	List various polygon filling algorithms							
	Ans	Various polygon filling algorithms are:		1 M each,					
		• Flood Fill Algorithm		Any two					
		Boundary Fill Algorithm							
		• Scan Line Algorithm							
	g	Give matrix representation for 2D scalin	ng	2 M					
	Ans	Let us assume that the original co-ordinate	is are (X, Y) , the scaling factors are (S_X, S_Y) , and	2 M for					
		•	s can be mathematically represented as shown	proper Matrix					
		below:							
			S_X and $Y' = Y \cdot S_Y$						
			ect in X and Y direction respectively. The above						
		equations can also be represented in matrix							
			$\begin{bmatrix} \mathbf{X}' \\ \mathbf{Y}' \end{bmatrix} = \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} \begin{bmatrix} \mathbf{S}_{\mathbf{x}} & 0 \\ 0 & \mathbf{S}_{\mathbf{y}} \end{bmatrix}$						
2		Attempt any THREE of the following:		12 M					
2				4 M					
	а	Differentiate between Random Scan and Raster Scan.							
	Ans	Random Scan Display	Raster Scan Display	Any four					
		In vector scan display the beam is moved between the end points of the	In raster scan display the beam is moved all over the screen one scan at	points: 1 mark each					
		graphics primitives.	a time, from top to bottom and then						
		Vactor diaplay flickors when the	back to top.						
		Vector display flickers when the number of primitives in the buffer	In raster display, the refresh process is independent of the complexity of						
		becomes too large.	the image.						

	(150/11) - 201		
	Scan conversion is not required. Scan conversion hardware is not required. Vector display draws continuous and	Graphics primitives are specified in terms of their endpoints and must be scan converted into their corresponding pixels in the frame buffer. Because each primitive must be scan converted real time dynamics is far more computational and requires separate scan conversion hardware. Raster display can display	
	Mathematical functions are used to	Raster display can display mathematically smooth lines, polygons and boundaries of curves primitives only by approximating them with pixels on the raster grid. Screen points/pixels are used to draw	
	draw an image.	an image.	
	It does not user interlacing.	It uses interlacing.	
	Editing is easy.	Editing is difficult.	
	Cost is more	Cost is low	
	Vector display only draws lines and characters.	Raster display has ability to display areas filled with solid colors or patterns.	
	Resolution is good because this system produces smooth lines drawings because CRT beam directly follows the line path.	Resolution is poor because raster system in contrast produces zigzag lines that are plotted as discrete point sets.	
	Picture definition is stored as a set of line drawing instructions in a display file.	Picture definition is stored as a set of intensity values for all screen points, called pixels in a refresh buffer area.	
	They are more suited to line drawing application e.g. CRO and pen plotter.	They are more suited to geometric area drawing applications e.g. monitors, TV	
	It uses beam-penetration method.	It uses shadow-mask method	
b	Explain and write steps for DDA line dr	rawing algorithm.	4 M
Ans	 hence the name DDA. DDA algorithm is an in A DDA is hardware or sover an interval between 	-	Explanation 2M, Algorithm 2M
	• DDA method is referred to the numerical different	erization of lines, triangles and polygons. d by this name because this method is very similar ntial equations. The DDA is a mechanical device equations by numerical methods.	
	Algorithm:		
	Steps 1: Read the end point	ts of line $(x1,y1)$ and $(x2,y2)$.	
	· · ·		



	Steps 2: $\Delta x = abs (x_2 - x_1) and$	
	$\Delta y = abs (y_2 - y_1)$	
	Step 3: if $\Delta x \ge \Delta y$ then	
	length = Δx	
	else	
	length = Δy	
	end if	
	Step 4: $\Delta x = (x_2 - x_1)/\text{length}$	
	Step 5: $\Delta y = (y_2 - y_1)/\text{length}$	
	Step 6: $x = x_1 + 0.5 * sign(\Delta x)$	
	$y = y_1 + 0.5 * sign (\Delta y)$	
	Step 7: $i = 1$	
	while ($i \le length$)	
l	$\begin{cases} nlot (integer (y) integer (y)) \end{cases}$	
l	plot (integer (x), integer (y)) $x = x + \Delta x$	
l	$ \begin{aligned} \mathbf{x} &= \mathbf{x} + \Delta \mathbf{x} \\ \mathbf{y} &= \mathbf{y} + \Delta \mathbf{y} \end{aligned} $	
l	Step 8: End	
с	List out basic transformation techniques. Explain scaling transformation with respect to	4 M
	2D.	
Ans	Basic transformations techniques are:	Listing 1
	• Translation	Explanat 3M
	• Scaling	
	• Rotation	
1		
	Scaling Transformation	
	• Scaling means to change the size of object. This change can either	
	• Scaling means to change the size of object. This change can either	
	 Scaling means to change the size of object. This change can either be positive or negative. To change the size of an object, scaling transformation is used. In 	
	• Scaling means to change the size of object. This change can either be positive or negative.	
	 Scaling means to change the size of object. This change can either be positive or negative. To change the size of an object, scaling transformation is used. In the scaling process, you either expand or compress the dimensions of the object. 	
	 Scaling means to change the size of object. This change can either be positive or negative. To change the size of an object, scaling transformation is used. In the scaling process, you either expand or compress the dimensions of the object. Scaling can be achieved by multiplying the original co-ordinates of 	
	 Scaling means to change the size of object. This change can either be positive or negative. To change the size of an object, scaling transformation is used. In the scaling process, you either expand or compress the dimensions of the object. Scaling can be achieved by multiplying the original co-ordinates of the object with the scaling factor to get the desired result. 	
	 Scaling means to change the size of object. This change can either be positive or negative. To change the size of an object, scaling transformation is used. In the scaling process, you either expand or compress the dimensions of the object. Scaling can be achieved by multiplying the original co-ordinates of 	
	 Scaling means to change the size of object. This change can either be positive or negative. To change the size of an object, scaling transformation is used. In the scaling process, you either expand or compress the dimensions of the object. Scaling can be achieved by multiplying the original co-ordinates of the object with the scaling factor to get the desired result. 	
	 Scaling means to change the size of object. This change can either be positive or negative. To change the size of an object, scaling transformation is used. In the scaling process, you either expand or compress the dimensions of the object. Scaling can be achieved by multiplying the original co-ordinates of the object with the scaling factor to get the desired result. Let us assume that the original co-ordinates are (X, Y), the scaling 	
	 Scaling means to change the size of object. This change can either be positive or negative. To change the size of an object, scaling transformation is used. In the scaling process, you either expand or compress the dimensions of the object. Scaling can be achieved by multiplying the original co-ordinates of the object with the scaling factor to get the desired result. Let us assume that the original co-ordinates are (X, Y), the scaling factors are (S_X, S_Y), and the produced co-ordinates are (X', Y'). This can be 	

	1		
		respectively. The above equations can also be represented in matrix form as below: $\begin{bmatrix} X' \\ Y' \end{bmatrix} = \begin{bmatrix} X \\ Y \end{bmatrix} \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix}$ OR P'=P · S Where, S is the scaling matrix.	
		 If we provide values less than 1 to the scaling factor S, then we can reduce the size of the object. If we provide values greater than 1, then we can 	
		increase the size of the object.	
	d	Explain differ types of Text clipping in brief.	4 M
	Ans	Many techniques are used to provide text clipping in a computer graphics. It depends on the methods used to generate characters and the requirements of a particular application. There are three methods for text clipping which are listed below – All or none string clipping All or none character clipping Text clipping 	Explanation of 3 methods with diagrams 4 marks
		The following figure shows all or none string clipping –	
_			

This clipping method is based on characters rather than the entire string. In this method if the string is entirely inside the clipping window, then we keep it. If it is partially outside the window, then you reject only the portion of string being

		outside. If the character is on the boundary of the clipping window, then we discard only that portion of character that is outside of the clipping window.	
3		Attempt any THREE of the following:	12 M
	а	Explain stroke method and Bitmap method with example.	4M
	Ans	 1)STROKE METHOD Stroke method is based on natural method of text written by human being. In this method graph is drawing in the form of line by line. Line drawing algorithm DDA follows this method for line drawing. This method uses small line segments to generate a character. The small series of line segments are drawn like a stroke of pen to form a character. We can build our own stroke method character generator by calls to the line drawing algorithm. Here it is necessary to decide which line segments are needed for each 	Stroke Method 2 Marks; Bitmap Method 2 Marks
		 character and then drawing these segments using line drawing algorithm. 2)BITMAP METHOD Bitmap method is a called dot-matrix method as the name suggests this method use array of bits for generating a character. These dots are the points for array whose size is fixed. 	
		 In bitmatrix method when the dots is stored in the form of array the value 1 in array represent the characters i.e. where the dots appear we represent that position with numerical value 1 and the value where dots are not present is represented by 0 in array. It is also called dot matrix because in this method characters are represented by an array of dots in the matrix form. It is a two dimensional array having columns and rows. A 5x7 array is commonly used to represent characters. However 7x9 and 9x13 arrays are also used. Higher resolution devices such as inkjet printer or laser printer may use character arrays that are over 100x100. 	
	b	Explain types of Parallel Projection with example.	4M
	Ans	 Orthographic projection – the projection direction is a normal one to the plane and it is categorized as Top projection Front projection Side projection 	Orthographi c projection 2 marks; Oblique projection 2 Marks

	Top view Top view Top view Side view Front view	
	 Oblique projection – the projection direction is not a normal one to the plane; it gives a better view and it is categorized as Cavalier projection Cabinet projection 	
С	Write down Cohen-Sutherland Line clipping algorithm.	4M
Ans	 Step 1: Scan end points for the line P1(x1, y1) and P2(x2, y2) Step 2: Scan corners for the window as (Wx1, Wy1) and (Wx2, Wy2) Step 3: Assign the region codes for endpoints P1 and P2 by 	Correct algorithm 4 Marks
	$\begin{array}{rcrcr} Bit 1 & - & if (x < Wx1) \\ Bit 2 & - & if (x < Wx2) \\ Bit 3 & - & if (x < Wy2) \end{array}$	

	Bit 4 - if $(x < Wy1)$	
	Step 4: Check for visibility of line P1, P2	
	• If region codes for both end points are zero then the line is visible, draw it and jump to step 9.	
	 If region codes for end points are not zero and the logical and operation of them is also not zero then the line is invisible, reject it and jump to step 9. If region codes for end points does not satisfies the condition in 4(i) and 4(ii) then line is partly visible. Step 5: Determine the intersecting edge of the clipping window by inspecting the region codes for endpoints. 	
	 If region codes for both the end points are non-zero, find intersection points P1 and P2 with boundary edges of clipping window with respect to point P1 and P2. If region code for any one end point is non zero then find intersection point P1 or P2 with the boundary edge of the clipping window with respect to it. Step 6: Divide the line segments by considering intersection points. 	
	Step 7: Reject the line segment if any of the end point of it appear outside the window.	
	Step 8: Draw the remaining line.	
	Step 9: Exit	
d	Explain Koch curve with diagram.	4M
Ans	Koch Curve: - In Koch curve, begin at a line segment. Divide it into third and replace the center by the two adjacent sides of an equilateral triangle as shown below.	Description 3 Marks; Diagram 1 Mark
	(a)	
	(b) Fig 6.3 Replacement of Line Segment for Koch Curve	
	This will give the curve which starts and ends at same place as the original segment but is	
	built of 4 equal length segments, with each 1/3rd of the original length. So the new curve	
	has 4/3 the length of original segments. Repeat same process for each of the 4 segment	
	which will give curve more wiggles and its length become 16/9 times the original.	
	Suppose repeating the replacements indefinitely, since each repetition increases the length	
	by a factor of 4/3, the length of the curve will be infinite but it is folded in lots of tiny	

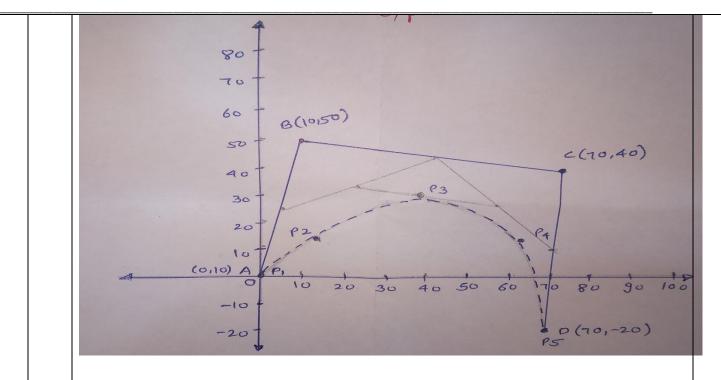
ļ		Attemp	Attempt any THREE of the following:								12 M
	а	Compare Bitmap Graphics and Vector based graphics.									4 M
	Ans Bitmap Graphics				Vector Based	Grap	ohic		Any 4 Points of		
		-	It is pixel bas	sed im	age		It is Mathematical ba	ased	image		comparison; 1 Mark each
			Images are re	esoluti	on depend	lent.	Images are formula dependent.	based	1 /		
			These image scalable.		ot easily		Easily scalable with formula.	the h	elp of		
			Poor quality to Vecto		ige as oppo d Graphics		Better image quality Bitmap Graphic		ompare to		
		-	Size of imag	e is hig	gh.		Size of image is low	•			
	b	Consid	er line from	(4, 4) 1	to (12 9).	Use B	Bresenham's algorith	nm to	o rasterize	this line.	4 M
	Ans		x1 =	= 4 y1	= 4 & x	x2 = 1	2 y2 = 9				Any Suitable
		Calculation Result									method can be consider
		dx = al	ps(x1 - x2)		8 = abs(4	- 12)					Correct
		dy = abs(y1 - y2) 5 = $abs(4 - 9)$				- 9)					steps and result: 4
		p = 2 *	(dy - dx)		-6 = 2 * ((5 - 8)					Marks
		ELSE			$\mathbf{x} = \mathbf{x}1 \mid \mathbf{y}$	y = y1	end $=$ x2				
					x = 4 y =	= 4 e	nd = 12				
		STEP	while(x <	x =	= x + 1	if(p	$< 0) \{ p = p + 2 * dy \}$	OU	TPUT		
			end)				<pre>} else{ p = p + 2 * (dy - dx) }</pre>				
		1	5 < 12	5 = 4	+ 1	IF 4	= -6 + 2 * 5	x =	5 y = 4		
		2	6 < 12	6 = 5	+ 1	ELSI	E -2 = 4 + 2 * (5 - 8)	x =	6 y = 5		
		3	7 < 12	7 = 6	+ 1	IF 8 :	= -2 + 2 * 5	x =	7 y = 5		

	_						
	4	8 < 12	8 = 7 + 1	ELSE $2 = 8 + 2 * (5 - 8)$	x = 8 y = 6		
	5	9 < 12	9 = 8 + 1	ELSE -4 = 2 + 2 * (5 - 8)	x = 9 y = 7		
	6	10 < 12	10 = 9 + 1	IF 6 = -4 + 2 * 5	x = 10 y = 7		
	7	11 < 12	11 = 10 + 1	ELSE $0 = 6 + 2 * (5 - 8)$	x = 11 y = 8		
	8	12 < 12	12 = 11 + 1	ELSE $-6 = 0 + 2 * (5 - 8)$	x = 12 y = 9		
С	Use Co	 hen-Sutherl	and algorithm	to clip two lines PI (40,	15) P2 (75. 4	(5) and P3	4 M
			00, 10) agains	t a window A (50, 10),	B (80, 10). C	(80, 40) &	
Ans	Solutio	50,40) on :					Any
	Line 1	· P1 (40 1	5) - P2 (75-45	5) Wxi = 50 Wy2 = 40 W	$Vx^{2} - 80 Wy^{2}$	- 10	suitable method can
				•	1X2 = 00 Wy 2	- 10	be consider
	Point	Ende	ode ANDi	ng			Computatio n for Line
	P1 (0001	0000	(Partially visible)			1: 2 Marks;
	P2 (0000					Computatio n for Line 2
							: 2 Marks
	$\mathbf{v}_{1} = \mathbf{m}_{1}$	$(\mathbf{x}_1 - \mathbf{x}_1) + \mathbf{x}_2$	$v = \frac{6}{7}(50-40) +$	15 m –	45-15		
	$\mathbf{y}_1 = \mathbf{m}$	$(\mathbf{x}_{\mathbf{L}} - \mathbf{x}) + \mathbf{y}$	$7 = \frac{1}{7}(30-40)+$	15 $m = \frac{1}{2}$	75-40		
	= 23.5	57					
	$x_1 = \frac{1}{m}$	$(y_{\rm T} - y) + z$	$x = \frac{7}{6}(40-50) +$	40 = 69.16			
	$y_2 = m($	$(\mathbf{x}_{\mathrm{R}} - \mathbf{x}) + \mathbf{y}$	$y = \frac{6}{7}(80-40) +$	15 = 49.28			
	$x_2 = \frac{1}{m}$	$(y_{B} - y) + (y_{B} - y) + $	$x = \frac{7}{6}(10-15)+$	-40 = 34.16			
	Hence:						
			P ₁ (40,	(50, 40) y_1 y_1 (50, 10) (50, 10) (5			

	$\begin{bmatrix} A'\\ B'\\ C'\\ D' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1\\ 0 & 0 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0\\ -1/\sqrt{2} & 1/\sqrt{2} & 0\\ -1/\sqrt{2} & 1/\sqrt{2} & 0\\ -\frac{1}{\sqrt{2}} + 1 & -\frac{1}{\sqrt{2}} & 1\\ \end{bmatrix}$ $= \begin{bmatrix} 1 & 0 & 1\\ -\frac{1}{\sqrt{2}} + 1 & -\frac{1}{\sqrt{2}} & 1\\ 1-\sqrt{2} & 0 & 1\\ 1-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1 \end{bmatrix}$	
e	Explain curve generation using Interpolation technique.	4 M
Ans	Specify a spline curve by giving a set of coordinate positions, called control points, which indicates the general shape of the curve These, control points are then fitted with piecewise continuous parametric polynomial functions in one of two ways. When polynomial sections are fitted so that the curve passes through each control point, the resulting curve is said to interpolate the set of control points. On the other hand, when the polynomials are fitted to the general control-point path without necessarily passing through any control point, the resulting curve is said to approximate the set of control points interpolation curves are commonly used to digitize drawings or to specify animation paths. Approximation curves are primarily used as design tools to structure object surfaces an approximation spline surface credited for a design application. Straight lines connect the control-point positions above the surface.	Description 2 Marks; Example/Di agram 2 Marks

5		Attempt any two of the following:	12 M
	а	Rotate a triangle defined by A(0,0), B(6,0), & C(3,3) by 90 ⁰ about origin in anti-clock wise direction	6 M
	Ans	The new position of point A (0, 0) will become A' (0,0) The new position of point B (6,0) will become B' (0, 6) The new position of point C (3, 3) will become C' (-3, 3) $\begin{bmatrix} x' \\ y' \\ \omega' \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} x \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$	Matrix 2 Marks Correct answer 4 marks
		$\begin{bmatrix} 0 & 0 & 1 \\ 6 & 0 & 1 \\ 3 & 3 & 1 \end{bmatrix} \times \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 6 & 1 \\ -3 & 3 & 1 \end{bmatrix}$	
		$ \begin{array}{c} 6 & B' \\ 5' & -6 \\ 2 \\ -6 - 5 - 4 - 3 - 2 - 1 \\ \end{array} $	
	b	Explain boundary fill algorithm with pseudo code. Also mention its limitations if any.	6 M
	Ans	<pre>Procedure : boundary_fill (x, y, f_colour, b_colour) { if (getpixel (x,y) ! = b_colour && getpixel (x, y) ! = f_colour)</pre>	4m algorithm, 2m for limitations
		• There is a problem with this technique. Consider the case following, where we tried to fill the	

	entire region. Here, the image is filled only partially. In such cases, 4-connected pixels technique cannot be used.	
	Won't fill this area	
	$\bullet \bullet \bullet \bullet$	
C	obtain the curve parameters for drawing a smooth Bezier curve for the following points A(0,10), B(10,50), C(70,40) &D(70,-20)	6 M



Ans		Any correct method can
	A(0,10), B(10,50), C(70,40), D(70,-20)	be consider.
	$P(u) = (1 - u^3)P_1 + 3u(1 - u^2)P_2 + 3u^2(1 - u)P_3 + u^3P_4$	Calculation 3 Marks
	$U=0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}$	Diagram 3Marks
	$P(0) = P_{1}=(0,10)$	
	$P(\frac{1}{4}) = (1 - \frac{1}{4})^{3} P_{1} + 3\frac{1}{4}(1 - \frac{1}{4})^{2} + 3(\frac{1}{4})^{2}(1 - \frac{1}{4})P_{3} + (\frac{1}{4})^{3} P_{4}$	
	$=\frac{27}{64}(0,10)+\frac{27}{64}(10,50)+\frac{9}{64}(70,40)+\frac{1}{64}(70,-20)$	
	$= \left(\begin{array}{c} 27 \\ 64 \end{array} \times 0 + \begin{array}{c} 27 \\ 64 \end{array} \times 10 + \begin{array}{c} 9 \\ 64 \end{array} \times 70 + \begin{array}{c} 1 \\ 64 \end{array} \times 70 + \begin{array}{c} 27 \\ 64 \end{array} \times 10 \end{array} \right)$	
	$\frac{27}{64} \times 50 + \frac{9}{64} \times 40 + \frac{1}{64} \times -20$	
	$= \left[0 + \frac{270}{64} + \frac{630}{64} + \frac{70}{64}, \frac{270}{64} + \frac{135}{64} + \frac{360}{64} - \frac{20}{64}\right]$	
	$= \left[\frac{970}{64}, \frac{745}{64} \right] = \left(\frac{15.15}{11.64} \right)$	
	$P(\frac{1}{2}) = (1 - \frac{1}{2})^{3} P_{1} + 3\frac{1}{2}(1 - \frac{1}{2})^{2} P_{2} + 3(\frac{1}{2})^{2}(1 - \frac{1}{2})P_{3} + (\frac{1}{2})^{2} P_{4}$	
	$= (\frac{1}{8})(0,10) + \frac{3}{8}(10,50) + \frac{3}{8}(70,40) + \frac{1}{8}(70,-20)$	
	$= (\frac{1}{8} \times 0 + \frac{3}{8} \times 10 + \frac{3}{8} \times 70 + \frac{1}{8} \times 70,$	
	= ×10+===×50+===×40+==×40)	
	$= \left(\frac{30}{8} + \frac{210}{8} + \frac{70}{8}, \frac{10}{8} + \frac{150}{8} + \frac{120}{8} + \frac{-20}{8}\right)$	
	$= \left(\frac{310}{8}, \frac{260}{8}\right) = \left(\frac{38.7}{32.5}\right)$	

 $P(\frac{3}{4}) = (1 - \frac{3}{4})^{3} P_{1} + 3\frac{3}{4}(1 - \frac{3}{4})^{2} P_{2} + 3(\frac{3}{4})^{2}(1 - \frac{3}{4})P_{3} + (\frac{3}{4})^{3} P_{4}$ $=\frac{1}{64}(0,10)+\frac{9}{64}(10,50)+\frac{27}{64}(70,40)+\frac{27}{64}(70,-20)$ $= \left(\frac{1}{64} \times 0 + \frac{9}{64} \times 10 + \frac{27}{64} \times 70 + \frac{27}{64} \times 70\right)$ $\frac{1}{64} \times 10 + \frac{9}{64} \times 50 + \frac{27}{64} \times 40 + \frac{27}{64} \times -20 \right)$ $= \left(\frac{90}{64} + \frac{1890}{64} + \frac{1890}{64}\right) \frac{10}{64} + \frac{450}{64} + \frac{1080}{64} - \frac{540}{64}\right)$ = (60.46, 15.62) P(1) = (70, -20)

OR

ITERATION 1:

Mid of AB = AB'

AB' = [(Ax + Bx)/2, (Ay + By)/2)]= [(0+10)/2, (10+50)/2]= [(10)/2, (60)/2]= (5, 30)

Mid of BC = BC'

BC' =
$$[(Bx + Cx)/2, (By + Cy)/2)]$$

$$= [(10+70)/2, (50+40)/2]$$

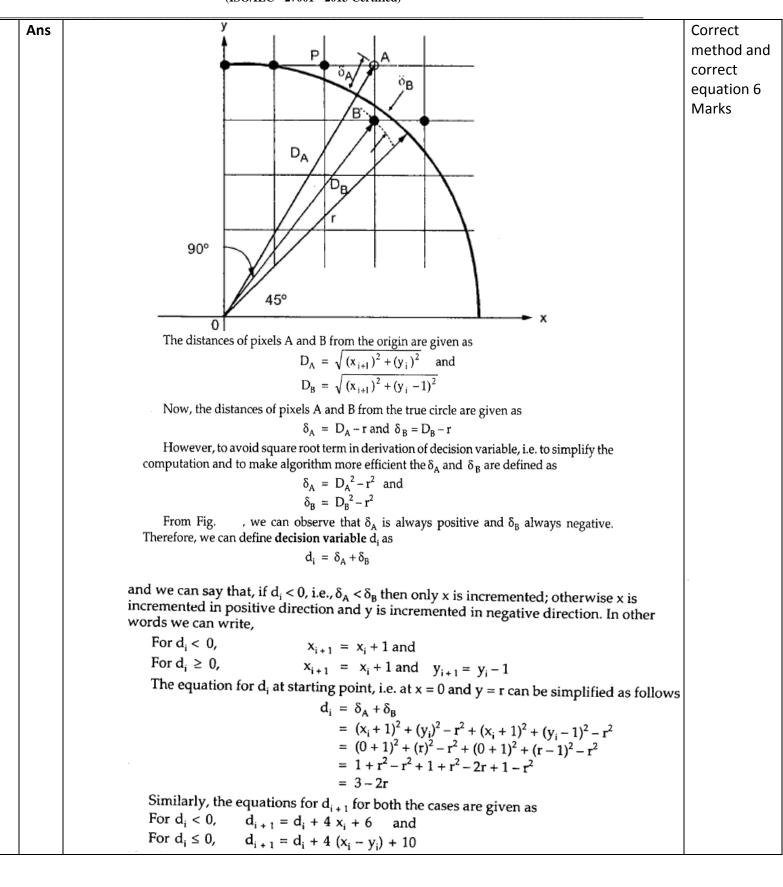
= [(80)/2, (90)/2]

Mid of CD = CD'

CD' = [(Cx + Dx)/2, (Cy + Dy)/2)]

$$= [(70+70)/2, (40+(-20))/2]$$

	=	[(140)	/2, (20)/2]	
	=	(70, 1	0)	
ITERA	ATION	2:		
Mid of	ABC	= ABC'		
ABC'	=	[(ABx	(A + BCx)/2, (ABy + BCy)/2)]	
	=	[(5+40	0)/2, (30+45)/2]	
	=	[(45)/2	2, (75)/2]	
	=	(22.5,	37.5)	
Mid of	BCD	= BCD'		
BCD'	=	[(BCx	(+CDx)/2, (BCy + CDy)/2)]	
	=	[(40+7	70)/2, (45+10)/2]	
	=	[(110)	/2, (55)/2]	
	=	(55, 2	7.5)	
ITERA	ATION	3:		
Mid of	ABCI	O = ABC	CD'	
ABCD)'	=	[(ABCx + BCDx)/2, (ABCy + BCDy)/2)]	
		=	[(22.5+55)/2, (37.5+27.5)/2]	
		=	[(77.5)/2, (65)/2]	
		=	(38.25, 32.5)	
	Mid of ABC' Mid of BCD' ITERA Mid of	= ITERATION Mid of ABC ABC' = = = Mid of BCD BCD' = = = = = ITERATION Mid of ABC	= (70, 14) ITERATION 2: Mid of ABC = ABC' ABC' = [(ABx) = [(A5)/2 = (22.5, Mid of BCD = BCD' BCD' = [(BCx) = [(40+2) = [(110) = (55, 2) ITERATION 3: Mid of ABCD = AB0 ABCD' = = = =	= (70, 10) ITERATION 2: Mid of ABC = ABC' ABC' = [(ABx + BCx)/2, (ABy + BCy)/2)] = [(5+40)/2, (30+45)/2] = [(45)/2, (75)/2] = (22.5, 37.5) Mid of BCD = BCD' BCD' = [(BCx + CDx)/2, (BCy + CDy)/2)] = [(40+70)/2, (45+10)/2] = [(110)/2, (55)/2] = (55, 27.5) ITERATION 3: Mid of ABCD = ABCD' ABCD' = [(ABCx + BCDx)/2, (ABCy + BCDy)/2)] = [(22.5+55)/2, (37.5+27.5)/2] = [(77.5)/2, (65)/2]



		70							-	
		60								
		50	B(10,50)		Br					
		43	(5,30) MB	C (22.5.37)	ABrp			C (70,40	J	
		-30 NB			(35-25, 37-57	\diamond	BCD (55,			
		- 20					12.53			
								CD (70	, 10) C	
		- 10	\o		40	50	60 7	° 80	90	
		- 20						0.07		
								^в D (7, -	20)	
							Scanne	d by CamScann		
								a by Camscann	er	
								i by Camscain	er	
								l by Camscann	er	
								l by Camseann	er	
								l by Camscam		
								by Camscann		
								by Camscam		
								by Camscam		
								by Camscam		
								by Camscam		
								by Camscam		
		Attompt any ti	vo of the follo	wing				by Camscam		12 M
6		Attempt any ty	wo of the follo	owing:				by Camscam		12 M
6	а	Attempt any tw Write matrices			dinates s	system f	or 3D scaling			12 M 6M
6		Write matrices	s in homogene	eous co-or						6M
6	a Ans		s in homogene	eous co-or	caling i	s as fo	ollows:			
6		Write matrices	s in homogene	eous co-or	caling i	s as fo	ollows:			6M Correct
6		Write matrices	s in homogene	eous co-or	caling i	s as fo	ollows:			6M Correct matrix 6
6		Write matrices	s in homogene	eous co-or	caling i	s as fo	ollows:			6M Correct matrix 6
6		Write matrices	s in homogene	eous co-or		s as fo	ollows:			6M Correct matrix 6

	It specifies three co-ordinates with their own scaling factors. If scale factors,	
	$S_x = S_y = S_z = S > 1$ then the scaling is called as	
	magnification.	
	$S_x = S_y = S_z = S < 1$ then the scaling is called as	
	reduction.	
	Therefore, point after scaling with respect to origin can be calculated as,	
	$\therefore P = P \cdot S$	
b	Write down Cyrus-Beck line clipping algorithm.	6M
Ans	Step 1: Read end points of line P_1 and P_2 .	Correct
	Step 2: Read vertex coordinates of clipping window.	algorith
	Step 3: Calculate $D = P_2 - P_1$.	marks
	Step 4: Assign boundary point b with particular edge.	
	Step 5: Find inner normal vector for corresponding edge.	
	Step 6: Calculate D.n and $W = P_1 - b$	
	Step 7: If D.n > 0	
	$t_{\rm L} = -(W.n)/(D.n)$	
	else	
	$t_{\rm U} = -(W.n)/(D.n)$	
	end if	
	Step 8: Repeat steps 4 through 7 for each edge of clipping window.	
	Step 9: Find maximum lower limit and minimum upper limit.	
	Step 10: If maximum lower limit and minimum upper limit do not satisfy	
	condition $0 \le t \le 1$ then ignore line.	
	Step 11: Calculate intersection points by substituting values of maximum lower	
	limit and minimum upper limit in parametric equation of line P_1P_2 .	
	Step 12: Draw line segment $P(t_L)$ to $P(t_U)$.	
	Step 13: Stop.	<u> </u>
С	Derive the expression for decision parameter used in Bresenhaum's circle drawing algorithm.	6M

